An algorithm to invert matrix based on LU decomposition to apply in reactor core analyses

R. S. Dos Santos¹ E-mail: rsantos@ien.gov.br

¹ SETER, IEN

Keywords: matrix calculations, reactor analysis, numerical calculations, condition number.

The analysis of a nuclear reactor, be it for power production, radioisotope production, or even for research, is always preceded by the determination of the neutron flux distribution Ψ in the reactor core, both in space, energy, angular direction, and also in the time variable. Using operators to describe the neutron distribution we have:

$$\Theta \Psi = S \tag{1}$$

where, Θ is an operator describing neutron interactions and spatial dependence, and *S* represents an external source.

Analytical solution is impractical for Eq.(1). Usually, solutions are based on so-called numerical methods. For that, the operator equation is discretized spatially in such way that we always have an equation system represented by a matrix like this:

$$\underline{\mathbf{M}}\underline{\Psi} = \underline{S} \tag{2}$$

This system can be analyzed, according to its nature, as well- or ill-conditioned [1]. The first leads to a numerical solution, dependent only on an acceptable error. The second one does not lead to a solution. This matrix condition number, $\kappa(M)$

, is defined by:

$$\kappa(\underline{\underline{M}}) = \|\underline{\underline{M}}\|, \|\underline{\underline{M}}^{-1}\|$$
(3)

where, $\|\underline{X}\|$ represents the norm of matrix \underline{X} . In Eq.(3), well-conditioned system has $\kappa(\underline{M}) \approx 1$. On the hand, large one is ill-one. For determining \underline{M}^{-1} , the usual method is to use the well-known adjoint matrix $adj(\underline{M})$ and associated determinant

$$\underline{\underline{M}}^{-1} = \frac{1}{\underline{\underline{M}}} a dj(\underline{\underline{M}})$$
(4)

However, in reactor core calculations, when we consider space and energy, this leads to a very expensive matrix calculations.

In this work, we have developed an algorithm to calculate the $\|\underline{M}^{-1}\|$, based on \underline{LU} decomposition. Here \underline{L} is Lower, with unit at principal diagonal, and \underline{U} is Upper matrices.

$$\underline{M} = \underline{LU} \tag{5}$$

$$M^{-1} = U^{-1}L^{-1} \tag{6}$$

We have applied this matrix methodology using a finite difference for a discretization to a 1D diffusion operator

$$\Theta \Psi \Big|_{i} = -\frac{\partial^{2} \Psi}{\partial x^{2}} \Big|_{i} \approx \frac{1}{(\Delta x)^{2}} \Big(-\Psi_{i-1} + 2\Psi_{i} - \Psi_{i+1} \Big)$$
(7)

For four points, the matrices are:

$$\underline{\underline{M}} = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$
$$\underline{\underline{L}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1/2 & 1 & 0 & 0 \\ 0 & -2/3 & 1 & 0 \\ 0 & 0 & -3/4 & 1 \end{bmatrix} \quad \underline{\underline{L}}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1/2 & 1 & 0 & 0 \\ 1/3 & 2/3 & 1 & 0 \\ 1/4 & 1/2 & 3/4 & 1 \end{bmatrix}$$
$$\underline{\underline{U}} = \begin{bmatrix} 2 & -1 & 0 & 0 \\ 0 & 3/2 & -1 & 0 \\ 0 & 0 & 4/3 & -1 \\ 0 & 0 & 0 & 5/4 \end{bmatrix} \quad \underline{\underline{U}}^{-1} = \begin{bmatrix} 1/2 & 1/3 & 1/4 & 1/5 \\ 0 & 2/3 & 1/2 & 2/5 \\ 0 & 0 & 3/4 & 3/5 \\ 0 & 0 & 0 & 4/5 \end{bmatrix}$$
$$\underline{\underline{M}}^{-1} = \frac{1}{5} \begin{bmatrix} 4 & 3 & 2 & 1 \\ 3 & 6 & 4 & 2 \\ 2 & 4 & 6 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

Condition numbers are exhited at Tab 1.

Table 1: Condition numbers and norms.

	\underline{M}	\underline{M}^{-1}	$\kappa(\underline{M})$
L_1	4.000	4.500	18;00
L_2	5.292	3.919	20.74
L_{∞}	4.000	4.500	18.00

Reference

[1] KUO, S.S., Computer Applications of Numerical Methods, Addison-Wesley, 1972.