An algorithm to invert matrix based on LU decomposition to apply in reactor core analyses

R. S. Dos Santos ${ }^{1}$
E-mail: rsantos@ien.gov.br
${ }^{1}$ SETER, IEN

Keywords: matrix calculations, reactor analysis, numerical calculations, condition number.

The analysis of a nuclear reactor, be it for power production, radioisotope production, or even for research, is always preceded by the determination of the neutron flux distribution Ψ in the reactor core, both in space, energy, angular direction, and also in the time variable. Using operators to describe the neutron distribution we have:
$\Theta \Psi=S$
where, Θ is an operator describing neutron interactions and spatial dependence, and S represents an external source.

Analytical solution is impractical for Eq.(1). Usually, solutions are based on so-called numerical methods. For that, the operator equation is discretized spatially in such way that we always have an equation system represented by a matrix like this:
$\underline{\underline{M}} \underline{\Psi}=\underline{S}$

This system can be analyzed, according to its nature, as well- or ill-conditioned [1]. The first leads to a numerical solution, dependent only on an acceptable error. The second one does not lead to a solution. This matrix condition number, $\kappa(\underline{\underline{M}})$, is defined by:
$\kappa(\underline{\underline{M}})=\|\underline{\underline{M}}\|\left\|\underline{\underline{M}}^{-1}\right\|$
where, $\|\underline{\underline{X}}\|$ represents the norm of matrix $\underline{\underline{X}}$. In Eq.(3), well-conditioned system has $\kappa(M) \approx 1$. On the hand, large one is ill-one. For determining $\underline{\underline{M}}^{-1}$, the usual method is to use the well-known adjoint matrix $\operatorname{adj}(\underline{\underline{M}})$ and associated determinant $|\underline{\underline{M}}|$.

$$
\begin{equation*}
\underline{\underline{M}}^{-1}=\frac{1}{|\underline{\underline{M}}|} \operatorname{adj} \underline{\underline{\underline{M}}} \tag{4}
\end{equation*}
$$

However, in reactor core calculations, when we consider space and energy, this leads to a very expensive matrix calculations.

In this work, we have developed an algorithm to calculate the $\left\|\underline{\underline{M^{-1}}}\right\|$, based on $\underline{\underline{L}} \underline{\underline{\underline{U}}}$ decomposition. Here $\underline{\underline{L}}$ is Lower, with unit at principal diagonal, and $\underline{\underline{U}}$ is Upper matrices.
$\underline{\underline{M}}=\underline{\underline{L}} \cdot \underline{\underline{U}}$
$\underline{\underline{M}}^{-1}=\underline{\underline{U^{-1}}} \underline{\underline{L^{-1}}}$

We have applied this matrix methodology using a finite difference for a discretization to a 1D diffusion operator

$$
\begin{equation*}
\left.\Theta \Psi\right|_{i}=-\left.\frac{\partial^{2} \Psi}{\partial x^{2}}\right|_{i} \approx \frac{1}{(\Delta x)^{2}}\left(-\Psi_{i-1}+2 \Psi_{i}-\Psi_{i+1}\right) \tag{7}
\end{equation*}
$$

For four points, the matrices are:

$$
\underline{\underline{M}}=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]
$$

$$
\begin{array}{ll}
\underline{\underline{L}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / 2 & 1 & 0 & 0 \\
0 & -2 / 3 & 1 & 0 \\
0 & 0 & -3 / 4 & 1
\end{array}\right] \quad \underline{\underline{L^{-1}}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 / 2 & 1 & 0 & 0 \\
1 / 3 & 2 / 3 & 1 & 0 \\
1 / 4 & 1 / 2 & 3 / 4 & 1
\end{array}\right] \\
\underline{\underline{U}}=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 \\
0 & 0 & 4 / 3 & -1 \\
0 & 0 & 0 & 5 / 4
\end{array}\right] \quad \underline{\underline{U}}=\left[\begin{array}{cccc}
1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 \\
0 & 2 / 3 & 1 / 2 & 2 / 5 \\
0 & 0 & 3 / 4 & 3 / 5 \\
0 & 0 & 0 & 4 / 5
\end{array}\right]
\end{array}
$$

$$
\underline{\underline{M}}^{-1}=\frac{1}{5}\left[\begin{array}{llll}
4 & 3 & 2 & 1 \\
3 & 6 & 4 & 2 \\
2 & 4 & 6 & 3 \\
1 & 2 & 3 & 4
\end{array}\right]
$$

Condition numbers are exhited at Tab 1.
Table 1: Condition numbers and norms.

	$\\|\underline{\underline{M}}\\|$	$\left\\|\underline{\underline{M}^{-1}}\right\\|$	$\kappa(\underline{\underline{M})}$
L_{1}	4.000	4.500	$18 ; 00$
L_{2}	5.292	3.919	20.74
L_{∞}	4.000	4.500	18.00

Reference

[1] KUO, S.S., Computer Applications of Numerical Methods, Addison-Wesley, 1972.

