Design and evaluation of new overview screens for the LABIHS simulator G. D. G., Jaime¹, J. C. S., Almeida¹, M. V., Oliveira¹ e-mails: gdjaime@ien.gov.br, jcsa@ien.gov.br, mvitor@lien.gov.br Keywords: reactor research, PSA, fuzzy. The development and evaluation of Human-System Interfaces (HSIs) for control rooms is a research area at the Human-System Interface Laboratory (LABIHS). The main objective of this laboratory is to develop and evaluate projects of HSIs for industrial plants using different methodology construction. The evaluation of the interfaces is carried out in the LABIHS simulator at the Nuclear Engineering Institute (IEN). Previous evaluation of the overview screen of the nuclear power plant (NPP) simulator of the LABIHS showed the necessity of additional information to reduce the operator workload. To overcome this issue, a set of three 52-inch LCD TV was acquired to replace the projector in the task of showing the overview screen to the simulator operators. A new set of screens was developed to gather information in the three LCD screens. The approach used on the development of the new screens was based on human factors guidelines and recommendations [1],[2]. The objective of this work is present the design of these new overview screens and to evaluate their contribution to reduce the operators mental workload in this new scenario. Fig. 1 presents the original overview screen of the simulator. In the design phase of this interface screen, no consideration was taken into account to satisfy the guidelines of HSI. Figure 1. Proposed thermo-hydraulic overview screen Fig. 2 presents the new developed left overview screen and Fig. 5 the screens used by the operator where information met to compose this screen. | | | | | | TRIP ALARM | | | | | | |-------------------------------------|----------------------------------|-------------------------------------|---------------------------------------|--------------------------------------|--|------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|---| | REACTIVITY | RHR | R RCS | | HOD CONTROL | | | MS/TS | | CONDENSES | PWS | | HEACTIVITY
HANGAL SI
BCT TRIP | CTMT
PRESS H & SI
BCT TRIP | PRZ | BCS
LO FLOW AT HE PARE
BCT TREP | MANUAL
BCT TRIP | POWER RANGE
IN FLICK IN SETTET
INCT THIP | | MSL
PRESS LOW SI ISO
RCT TRIP | TBN TRP & P-7
RCT TRP | | SG 1,2,3
WATER LEVEL LO-L
SICT TRIP | | OVERTEMP
ATEMP
RCT TRP | | PRESS IN
RCT TRIP | BCS
LO FLOW AT LO PWH
RCT TRIP | SOURCE RANGE
HI FLUX
RCT TRIP | PHIS BANCE
HIFLUX LO SETPT
RCT TRIP | | REACTOR TRIP
P-4
TION TRIP | TEN
OVERSPEED HE
TEN TRIP | CONDENSER
VACUUM LO
TEN TRIP | SG 1,2,3
WATER LEVEL III-I
TEN TRIP | | OVERPOWER ATEMP BCT TRP | | PRZ
PRESS LO & P-7
RCT TRIP | | INTIMO RANGE
HI FLUX
RCT TRIP | PINT BANCE
HI FLUX RATE
RCT TRIP | | | | | | | | | | | | ALARMS | | | | | | | RHR | | RCS | | ROD CONTROL | | cycs | | HS/TS | CONDENSER | FWS | | OCHIS
OUTLET TEMP | ACCIM TK
PRESS
H | PRZ
POSTV
OPENING | RCS 1,2,3
Tary
H | INTIMO RANGE
HI FLUX
ROD STOP | CONTROL BANK O
BOD
FULL WITHOGAWAL | WATER LEVEL | VCT
PRESS
III | MSIV | CONDENSER
WATER LEVEL
III | 96 1.2,3
WATER LEVEL
LO | | PRESS
LO | ACCEM TK
PRESS
LO | PRZ
PRESS HI
ALERT | BCS 1,2,3
Tang MACT Tang
MLO | OVERPOWER
BOD STOP | TWO OR MORE ROOS
AT BOTTON | WATER LEVEL
LO | PRESS
LO | MSL 1,2,3
PRESS BATE
III | CONBENSER
WATER LEVEL
LO | SG 1,2,3
STH FW
FLOW DEVIATION | | EIMT
BAD
H | SPEAV
ACTUATED | PRZ
PRESS LO
ALERT | RCS 1,2,3
FLOW LO
ALERT | AXIAL POWER
DISTRIBUTION
LIMIT | CONTROL BANK | CHARGING VALVE
WATER FLOW | ORLITEL LFORM | MES.
PRESS BATE IN
STEAM ISO | CONECNISER
ABS PRESS
HI | TEMP
HE | | PRESS HI 3
ALERT | CTMT
PHASE B
ISO ACTUATED | PRZ
PRESS LO
BACKEP HEATER ON | PRT
TEMP
H | | | CHARGING VALVE
WATER FLOW
LO | OUTLET FLOW | MSL 1,2,3
PRESS
LOW | CONDENSATE TK. | FW PUMP
DESCHARGE PRESS
III | | PRESS HI 2
ALERT | CTMT
SUMP WATER LEVEL
HE-M | PRZ
PRESS LO
SI ACTUATED | PRT
PRESS
M | | | BCP SEAL
BU WATER FLOW
LO | OUTLET TEMP | | COMBENSATE TK.
WATER LEVEL
LO | THE | | CTMT
PRESS HE1
ALERT | CTMT
SUMP WATER LEVEL
H | PRZ
WATER LEVEL HI
REATER ON | BCP 1,2,3
TRIP | REACTIVITY | | WATER LEVEL
LO-LO | L/D RHOX
OUTLET TEMP
III | ELECTRICAL | CONDENSATE TK. | AFW (MB)
ACTUATED | | CTMT
MOISTURE
H | CTMT
AR TOMP
H | PRZ
WATER LEVEL LO
HEATER OFF | | Tres-MUCT Tang | | | | OPEN | CONSERNATE PUMP
WATER FLOW
LO | | | | STATUS | | | | CF | ST | | PLA | ANT CONDITI | ION | | CONTROL. | | PERMISSIVE | | | VIOLATION | | | ACCEENT | TRANSIENT | STATUS | | C-1 | c-3 | P-4 | P-11 | | SUBCRITICALITY | BCS INTEGRITY | | LOCA | PORV | NOEMAL. | | C-2 | C-8 | P-6 | P-12 | | CORE COOLING | CTMT | | SGTR | MFWISO | DON'T KNOW | | C-3 | C-8 | P-7 | P-13 | | HEAT SINK | COOLANT | | STILIUP | | | | 0-4 | C-11 | P-8 | P-14 | | | | | FWLDR | | | | c-s | C-16 | P-10 | | | | | | | | | Figure 2. Proposed Alarm overview Screen. The new right overview screen integrates information to the operators about the position of the rods of the control and shutdown banks in the reactor core, the thermo-hydraulic operation point of the plant in a pressure versus temperature curve (P-T curve), and plant mode operation. Fig. 3 presents the new developed Pressure-Temperature Curve overview screen Figure 3. Proposed PT-Curve overview screen ## References [1] O'HARA, J.; STUBLER, W.; NASTA, K. Human-system interfaces management: effects on operator performance and issue identification. Upton: Brookhaven National Laboratory, 1997. [2] NUREG-0700, **Human System Interface Design Review Guidelines**, Washington: U.S. Nuclear Regulatory Commission, 2002 ¹ SEESC, IEN