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Dynamic mode decomposition (DMD) and deep
learning are data-driven approaches that allow a
description  of  the  target  phenomena  in  new
representation spaces. This fact motivates their
comparison  in  the  analysis  of  flow  data,
generated  through  experimental  setups  and
numerical simulations. The focused application
is  the  processing  of  high-speed  videos  of
horizontal  two-phase  stratified  and  slug  flows
regimes. Henceforth, in this work, we consider
the  traditional  DMD,  the  sparsity-promoting
DMD  (SPDMD)  and,  in  the  deep  learning
context,  we  select  an  unsupervised
convolutional  autoencoder  (CAE).  In  this
avenue,   it  becomes  imperative  to  compare
DMD  and  deep  learning  with  respect  to:
computational  complexity  of  target  techniques
(Tab.  1);  reduced  order  modeling  versus  data
representation  (Tab.  1);  data  set  necessary  to
compute the dynamic modes and deep learning
training (Tab. 1); the preservation of the phase
interface in the DMD and CAE space (Fig. 1,
Tab. 1 and Tab. 2); data synthesis (Fig. 2 and
Tab. 1). In general, the results favor DMD in the
considered applications.

Figure  1.  a,b  Original  slug  frames.  c,d
Corresponding  reconstructions  obtained  with
the CAE.  e,f  Slug frames reconstruction using
DMD.  g,h  Original  stratified  images.  i,j
Corresponding  CAE  reconstructions.  k,l
Reconstruction  of  stratified  images  through
DMD.

Fig.  2.  a–c  Interpolated  images  for  stratified
frames.  d–f  Images  obtained  in  the  decoder
output  for  interpolated  stratified  feature  maps.
g–i  Reconstruction  of  interpolations  in  DMD
space.  j–l  Slug  frames  obtained  through
interpolation in the image space.  m–o  Decoder
output  for  interpolated  slug  samples  in  latent
space.  p–r  Reconstruction  of  interpolations  in
DMD space.

Table  1.  (a)  Computational  complexity;  (b)
reduced order modeling; (c) data representation
for pattern recognition; (d) data set necessary to
compute the dynamic modes and deep learning
training;  (e)  the  preservation  of  the  phase
interface  in  DMD  and  CAE  spaces;  (f)  void
fraction preservation; (g) synthesis of new data
samples.

(a) (b) (c) (d) (e) (f) (g)
DMD G E P G E E E
CAE P P E G G G G
E-Excellent, G-Good, P-Poor

Table 2. Time-averaged void fraction for slug
and stratified flows.

Slug Stratified
Original 0.3551 0.4146
DMD 0.3554 0.4143
CAE 0.3555 0.4206
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