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The analysis of a nuclear reactor, be it for power 
production, radioisotope production, or even for 
research, is always preceded by the 
determination of the neutron flux distribution  
in the reactor core, both in space, energy, angular 
direction, and also in the time variable. Using 
operators to describe the neutron distribution we 
have: 
 

S                                                             (1) 
 
where,   is an operator describing neutron 
interactions and spatial dependence, and S  
represents an external source. 
 
Analytical solution is impractical for Eq.(1). 
Usually, solutions are based on so-called 
numerical methods. For that, the operator 
equation is discretized spatially in such way that 
we always have an equation system represented 
by a matrix like this: 
 

S                                                            (2) 

 
This system can be analyzed, according to its 
nature, as well- or ill-conditioned [1]. The first 
leads to a numerical solution, dependent only on 
an acceptable error. The second one does not lead 
to a solution. This matrix condition number,  M

, is defined by: 
 
  1.  MMM                                               (3) 

 
where, X  represents the norm of matrix X . In 

Eq.(3), well-conditioned system has   1M . 

On the hand, large one is ill-one. For determining
1M , the usual method is to use the well-known 

adjoint matrix  Madj  and associated determinant

M .  

 Madj
M

M
11                                               (4) 

However, in reactor core calculations, when we 
consider space and energy, this leads to a very 
expensive matrix calculations.  
 
In this work, we have developed an algorithm to 
calculate the 1M , based on UL. decomposition. 

Here L   is Lower, with unit at principal diagonal, 

and U.  is Upper matrices. 

ULM .                                                           (5) 

 
111 .   LUM                                                     (6)  

 
We have applied this matrix methodology using 
a finite difference for a discretization to a 1D 
diffusion operator 
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For four points, the matrices are: 
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Condition numbers are exhited at Tab 1. 
    
  Table 1:  Condition numbers and norms. 

 M  1M   M  

1L  4.000 4.500 18;00 

2L  5.292 3.919 20.74 

L  4.000 4.500 18.00 
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