Feasibility study for ^{99m}Tc production

P. A. R. Cinquini¹, J. C. Suita², C. M. Salgado² E-mail: <u>pedro.cinquini@gmail.com</u>, <u>suita@ien.gov.br</u>, <u>otero@ien.gov.br</u>

¹ IEN, ²DIRA, IEN

Keywords: cyclotron, molybdenum, technetium.

This report presents an initial survey of data for a feasibility study on the production of the ^{99m}Tc radioisotope on the Cyclotron model CV-28 installed at the IEN. Due to the global crisis in the supply of 99mTc due to an unscheduled shutdown of a reactor by one of the major suppliers of this radioisotope, new alternatives have been sought for emergency production of ^{99m}Tc. One proposal involves irradiating a molybdenum target with a proton beam. There are four main nuclear routes for the production ^{99m}Tc metastable isotope through of the bombardment with protons, only direct production, where ^{99m}Tc is the final product, which occurs through the ¹⁰⁰Mo(p,2n)^{99m}Tc reaction. The other three are indirect production routes: i) through the ¹⁰⁰Mo(p,pn)⁹⁹Mo reaction and the ⁹⁹Mo decay by ^{99m}Tc beta emission; ii) through the ${}^{100}Mo(p,2p){}^{99}Nb$ reaction and the decay from ⁹⁹Nb to ⁹⁹Mo and by beta emission to 99m Tc; iii) through the 98 Mo(p, γ) 99m Tc reaction. Natural molybdenum has an abundance of 9.63% for the ¹⁰⁰Mo isotope (see Table 1).

Table 1 – Isotopic composition of natural abundance molybdenum

Isotope	Natural abundance
⁹² Mo	14.84%
⁹⁴ Mo	9.25%
⁹⁵ Mo	15.92%
⁹⁶ Mo	16.68%
⁹⁷ Mo	9.55%
⁹⁸ Mo	24.13%
¹⁰⁰ Mo	9.63%

At first, data were investigated regarding the cross section of the $^{100}Mo(p,2n)^{99m}Tc$ excitation function with other functions. In Figure 1, the cross section values for various reaction energies $^{100}Mo(p,2n)^{99m}Tc$ are compared with other cross section values of other technetium isotopes produced through the reaction (p,2n).

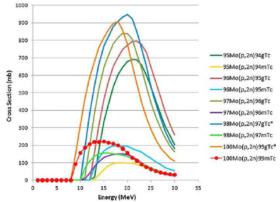


Figure 1. Comparison between the cross section reaction $^{100}Mo(p,2n)^{99m}Tc$ with other technetium isotopes produced through the reaction (p,2n)[1]

production of ^{99m}Tc through The the ¹⁰⁰Mo(p,2n)^{99m}Tc reaction begins to occur with an energy of around 9 MeV, reaching its peak between 15 and 16 MeV. The production yield of ^{99m}Tc also depends on the irradiation time. A major obstacle to the production of 99mTc through bombardment of protons on a natural molybdenum target is the large cross section of other technetium isotopes, which are undesirable at first when compared to direct production: ¹⁰⁰Mo(p,2n)^{99m}Tc. These isotopes, in addition to being undesirable, are chemically inseparable from 99mTc, which impairs the final quality of the radioisotope. A solution found to minimize the production of undesirable isotopes is the irradiation of a molybdenum target enriched with the ¹⁰⁰Mo isotope. For a next step, the project will now focus on assessing the availability and cost of molybdenum enriched with 100Mo. Samples of natural molybdenum will also be irradiated on CV-28 so that the production level of 99mTc and other isotopes is measured. This measurement will enable an economic evaluation of the production of ^{99m}Tc through the irradiation of natural molybdenum.

References

[1] CELLER, A.; HOU, XINCHI; BENARD, FRANCOIS; RUTH, THOMAS. (2011). Theoretical modeling of yields for proton-induced reactions on natural and enriched molybdenum targets. Physics in medicine and biology. 56. 5469-84. 10.1088/0031-9155/56/17/002.