

41

A massively parallel hardware for

modular exponentiations using the m-ary method

M. S. Farias
1
, N. Nedjah

2
, L.M. Mourelle

2

e-mail: msantana@ien.gov.br

1
 Division of Nuclear Engineering - IEN

2
 UERJ

Keywords: modular exponentiation, cryptographic

systems, modular multiplication.

Introduction

Most of cryptographic systems are based on

modular exponentiation. It is performed using

successive modular multiplications. One way of

improving the throughput of a cryptographic

system implementation is reducing the number of

the required modular multiplications. Existing

methods attempt to reduce this number by

partitioning, the exponent has constant or variable

size windows. A simple strategy of raise text to n,

or perform n-1 sequential multiplication, demands

processing time that could be avoided by a

concurrent approach: a (significantly large) series

of modular exponentiations may be split into

parallelized exponentiations upon pre-computed

values, reducing notably total time to encrypt text.

This report shows a proposed hardware

implementation for computing modular

exponentiations using the m-ary method and

parallelized exponentiations. This study is of

interest for applications in communication security

and data transmission in the nuclear area [1].

Methodology

Modular multiplication is a very important

operation for cryptography systems. The algorithm

encrypts and decrypts information performing the

operation C = T
E
 mod M, wherein E is called

exponent and M modulus is the module chosen

from the product of two primes. Note that the larger

the prime numbers are, the more secure the process

is. The solution developed seeks to parallel

implementation of the exponentiation T
E
 mod M

using different multipliers. As in the m-ary method

[2], the exponent E is divided into w partitions or

windows with d bits. The computation can be

described as in (1).

wherein exponent E is viewed as in (2).

From (1), one can envision the computation of all

in parallel once the pre-computation of T
pi

mod M has been completed.

Proposed architecture

The Figure 1 shows the macro-architecture of the

proposed modular exponentiator. It includes the

power memory (PMEM), a scalable number of

modular multipliers (MMULTs), the main

controller (MCTRL), wherein MMULTs receive

their operands from PMEM via the shared data bus

(DBUS). Memory PMEM stores the repository of

the pre-computed powers of T. Modular multiplier

MMULT implements a modular multiplication

using the Montgomery algorithm. Each MMULT

performs iteratively in order to provide a given

power of one of the pre-computed values stored in

PMEM. Binary-coded exponent is split into w ≥ 2

partitions. Each partition comprises d ≥ 2 bits. The

number of MMULTs coincides with the number of

partitions. The hardware has three processing

stages: pre-computation, squaring and

multiplication.

Fig. 1 –Macro-architecture of the parallel

exponentiator

Results

A parametrized VHDL code was written and

simulated on ModelSim XE III 6.4. The tests show

that the modular exponentiator takes about 40 clock

cycles to yield one single result [2]. It is a practical

demonstration that parallelized modular

exponentiation remarkably speeds up modular

exponentiations, which is a critical stage on encryp-

tion/decryption related-computation in most crypto

systems. The performance depends on parameters

w, d and the number of bits in E. The best

configuration should find a balance regarding

hardware area and response time.

References

[1] Cordaro, Joseph V., et al. "Ultra secure high

reliability wireless radiation monitoring

system." Instrumentation & Measurement

Magazine, IEEE 14.6 (2011): 14-18.

[2] Farias, M. S., Raposo, S. S. ; Nedjah, N.,

Mourelle, L. M. A Massively Parallel Hardware

for Modular Exponentiations Using the m-ary

Method. In: IEEE Latin American Symposium

on Circuits and Systems (LASCAS 2011).

