Prediction of scale thickness in pipelines using artificial neural network and gamma rays by MCNP6 code
Resumo
This report presents a method to study the deposition of scale in pipelines of multiphase systems (oil/water/gas), commonly found in the petroleum industry.
Downloads
Publicado
2021-08-12
Como Citar
Luna Salgado, W. ., Dam, R. S. de F., Affonso, R. R. W. ., & Salgado, C. M. (2021). Prediction of scale thickness in pipelines using artificial neural network and gamma rays by MCNP6 code. Instituto De Engenharia Nuclear: Progress Report, (4). Recuperado de https://revistas.ien.gov.br/index.php/ienprogressreport/article/view/423
Edição
Seção
Application of Nuclear Techniques in Industry
Licença
Copyright (c) 2021 William Luna Salgado, Roos Sophia de Freitas Dam, Renato Raoni Werneck Affonso, César Marques Salgado
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.