Prediction of scale thickness in pipelines using artificial neural network and gamma rays by MCNP6 code

Autores

  • William Luna Salgado Universidade Federal do Rio de Janeiro
  • Roos Sophia de Freitas Dam Universidade Federal do Rio de Janeiro
  • Renato Raoni Werneck Affonso Universidade Federal do Rio de Janeiro
  • César Marques Salgado Instituto de Engenharia Nuclear

Resumo

This report presents a method to study the deposition of scale in pipelines of multiphase systems (oil/water/gas), commonly found in the petroleum industry.

Downloads

Publicado

2021-08-12

Como Citar

Luna Salgado, W. ., Dam, R. S. de F., Affonso, R. R. W. ., & Salgado, C. M. (2021). Prediction of scale thickness in pipelines using artificial neural network and gamma rays by MCNP6 code. Instituto De Engenharia Nuclear: Progress Report, (4). Recuperado de https://revistas.ien.gov.br/index.php/ienprogressreport/article/view/423

Edição

Seção

Application of Nuclear Techniques in Industry